Vulcanization of polychloroprene
The vulcanization of neoprene or polychloroprene rubber (CR rubber) is carried out using metal oxides (specifically MgO and ZnO, sometimes Pb3O4) rather than sulfur compounds which are presently used with many natural and synthetic rubbers. In addition, because of various processing factors (principally scorch, this being the premature cross-linking of rubbers due to the influence of heat), the choice of rubber curing oven is governed by different rules to other diene rubbers. Most conventionally used accelerators are problematic when CR rubbers are cured and the most important accelerant has been found to be ethylene thiourea (ETU), which, although being an excellent and proven accelerator for polychloroprene, has been classified as reprotoxic. The European rubber industry has started a research project SafeRubber[4] to develop a safer alternative to the use of ETU.

Vulcanization of silicones
Room-temperature vulcanizing (RTV) silicone is constructed of reactive oil-based polymers combined with strengthening mineral fillers. There are two types of room-temperature vulcanizing silicone: Hardens due to the action of atmospheric humidity, a catalyst, and acetoxysilane. Acetoxysilane, when exposed to humid conditions, will form acetic acid.[5] The curing process begins on the outer surface and progresses through to its core. The product is packed in airtight cartridges and is either in a fluid or paste form. RTV-1 silicone has good adhesion, elasticity, and durability characteristics. The Shore hardness can be varied between 18 and 60. Elongation at break can range from 150% up to 700%. They have excellent aging resistance due to superior resistance to UV radiation and weathering.